EXERCISE 4 MODULAR FORMS 2019 DUE DATE: MAY 12, 2019

Exercise 1. Let $k \ge 12$. Show that the set of Poincaré series

$$\left\{P_m^k, \quad 1 \le m \le \frac{k}{12} + 1\right\}$$

span the space of cusp forms S_k .

Exercise 2. Let $c \ge 1$ and $m, n \in \mathbb{Z}$ integers. The Kloosterman sum is defined as

$$\operatorname{Kl}(m,n;c) := \sum_{\substack{x \mod c \\ \gcd(x,c)=1}} e\left(\frac{mx+nx}{c}\right)$$

where we abbreviate

$$e(z) := e^{2\pi i z}$$

and \bar{x} denotes the multiplicative inverse of $x \mod c$: $x\bar{x} = 1 \mod c$.

a) Show that if p is prime and $a \neq 0 \mod p$ then Kl(a, 0; p) = -1.

b) If $a, b \neq 0 \mod p$ then

$$\mathrm{Kl}(a,b;p) = \mathrm{Kl}(ab,1;p)$$

Exercise 3. a) Show that the hyperbolic measure $dxdy/y^2$ is invariant under

an Mobius transformation $g \in SL(2, \mathbb{R})$. b) Compute the hyperbolic area $\int_{\mathcal{F}} \frac{dxdy}{y^2}$ of the standard fundamental domain \mathcal{F} for $SL(2,\mathbb{Z})$.